Abstract

The processes of breaking, solution, and formation of hydrates behind a shock wave of moderate amplitude were studied experimentally in water with carbon dioxide bubbles under different initial static pressures. It is shown that an increase in the static pressure in a gas-liquid medium leads to reduction of critical relative amplitude of the shock wave, corresponding to starting development of Kelvin — Helmholtz instability and bubble splitting into small gas inclusions behind the shock wave front. It is shown that the rates of carbon dioxide solution and hydrate formation behind the shock wave front are close by the value; their dependences on medium and wave parameters are determined. Calculations by the model of gas hydration behind the shock wave are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.