Abstract
The decomposition mechanism in shocked pentaerythritol tetranitrate (PETN) was examined using time-resolved emission spectroscopy. PETN single crystals were subjected to stepwise loading along [100] and [110] to peak stresses between 2 and 13 GPa. Due to concurrent changes in the optical transmission of PETN, emission spectra were analyzed using the absorption data acquired separately under the same loading conditions. Analyses of the corrected emission data revealed two bands in the spectra at ∼3.0 and ∼2.4 eV. Both bands were observed in every experiment regardless of stress or crystal orientation. However, their relative and absolute intensities, and temporal behavior revealed stress and orientation dependence. The emission was identified as chemiluminescence from the nitronium ion, NO2+, on the basis of its electronic structure and properties. NO2+ electronic structure was analyzed using ab initio calculations, which showed transition energies matching those of the emitting intermediate observed exper...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.