Abstract

The density functional tight binding method was used to explore the energetics, electronic structure, and vibrational spectra of pentaerythritol tetranitrate (PETN) nanoparticles (NPs). The surface energy of the PETN NP is anisotropic and its extra energy decreases with the increase of size. The energy bands of the NPs are significantly expanded and the band gaps are narrowed, thus reducing the stability due to nanometer size effect. The surface of the NP is mainly covered by the NO2 group. The high-energy surface may play a role in triggering chemical decomposition. The vibration frequencies of the PETN NPs present a wider distribution than those of the gas and solid phase PETN, which will increase the probability of energy transfer to the molecules in the system and promote the decomposition of PETN. Our results provide a basic understanding from a molecular perspective to the energy properties of nano explosives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.