Abstract

We use a “self-consistent average atom” (SCAA) model to compute shock Hugoniots for aluminum, iron, molybdenum, strontium, barium and thulium. The pressures and energies include relativistic effects. We make comparisons with the Thomas-Fermi-Dirac (TFD) model and with the available experimental data including pressures, shock and particle speeds and energy deposition. The connection between the usage of the “average atom” (AA) model and “detailed configuration accounting” (DCA) is discussed in the Appendix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.