Abstract

In connection with the use of cryogenic liquids in high-speed gas dynamics and high-pressure physics, shock-wave processes in liquid hydrogen were investigated under plane, cylindrical and hemispherical loading. The plane loading of liquid hydrogen consisted of a multicyclic, nearly isentropic compression. A transducer employing a contact electrical effect was used to record this multicyclic compression process between a rigid wall and a flyer, resulting in a sequence of shock steps of decreasing amplitude, whose integrated action is equivalent to the isentropic compression of liquid hydrogen up to 500 kbar. The cylindrical loading was generated by detonating a high-explosive charge enclosing a cylindrical cavity along its axis that was filled with liquid hydrogen. Under these conditions shock velocities up to 13.7 km/sec were recorded, and pressure in the shock-compressed hydrogen reached 90 kbar. The formation of a boundary layer and expansion of the cylindrical cavity limited further pressure increases in the column of compressed liquid and lead to a decrease in the flow velocity. The observed increase in detonation velocity is associated with the influence of the channel wave on the detonation regime in the neighboring explosive layers. Under hemispherical loading, an increase in the converging shock velocity from 6 to 20 km/sec was recorded. The final pressure reached 210 kbar, and the total specific energy exceeded 200 kJ/g. During the release of the shock-compressed hydrogen into air at 0.1 torr, shock waves with velocities exceeding 50 km/sec were obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call