Abstract
Plate impact experiments are conducted on a dendritic dual face-center cubic phase high-entropy alloy (HEA) CoCrFeNiCu, consisting of Cu-lean dendritic (DR) and Cu-rich interdendritic regions (ID). Free surface velocity histories are obtained along with microstructure characterizations. The Hugoniot equation of state and spall strength at different shock stresses are determined. Dislocation slip is the main deformation mode for CoCrFeNiCu HEA, and the dislocation density of the Cu-rich interdendritic regions increases more significantly during shock compression. Both ductile and brittle damage modes are observed. With increasing impact velocity, the Cu-rich interdendritic regions with severe strain localizations and more defects provide more damage nucleation sites. The spall strength increases firstly, reaches its maximum at a peak shock stress of 5.8 GPa, and then decreases. Molecular dynamics simulations reveal that the abnormal dependence of spall strength on peak shock stress is a result of strain localization and thermal softening in the Cu-rich regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.