Abstract

High-entropy alloys (HEAs) are considered as potential structural materials for aerospace and defense applications where impacts are recurrently encountered. The dynamic mechanical properties and the underlying deformation and damage mechanisms are significant for safety assessment and structural design optimization, but are underinvestigated. In this work, two types of plate impact experiments, i.e., shock compression and spallation, are performed on typical quaternary CoCrFeNi HEA (at%), to investigate its dynamic mechanical properties and microscopic deformation/damage mechanisms. Free-surface velocity histories are measured to evaluate the mechanical properties and damage processes, including the Hugoniot elastic limit (HEL; ∼0.8 GPa), spall strength (∼3.2 GPa) and pullback rates. The spall strength of the CoCrFeNi HEA is higher than those of most medium- and high-entropy alloys ever reported, except for the Al0.1CoCrFeNi HEA. The deformed samples are characterized with scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Shock-induced dislocation slip and deformation twinning dominate plastic deformation. With increasing impact velocity, dislocation density increases significantly and twin bundles appear instead of individual twins. For incipient spallation, voids nucleate preferentially at grain boundaries, especially at grain boundary triple junctions. Damage in the CoCrFeNi HEA is ductile in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call