Abstract

High-performance low-cost superhydrophobic sponges are desired for selective recycling of leaking oils from open water. Herein, an ingenious method is proposed to fabricate an ultrathin superhydrophobic coating layer on a commercial sponge. The coating layer is composed of a shish-kebab-structured porous ultrahigh molecular weight polyethylene (UHMWPE) film that is fabricated from a UHMWPE/xylene solution by shear flow-induced crystallization. A strong relationship between the shish-kebab crystallite morphology and the superwetting performance is confirmed. The UHMWPE coating layer fabricated at a 900 rpm rotation rate possesses a lamellae size of 95.1 nm and a lamellae distance of 27.4 nm, which lead to a high water contact angle of 157° and a low contact angle hysteresis of 4.5°. The UHMWPE layer prepared in 4 min of treatment is thick enough to prevent the intrusion of water even under vacuum and remain superoleophilic. The developed UHMWPE-coated sponge (UCS) exhibited a high absorption capability of 70-191 g/g toward various oils and solvents, which is comparable with the neat melamine sponge. Its excellent compressibility and durability enabled fast recovery of absorbed oil with a high recovery rate (over 85%) by mechanical squeezing. The UCS could be assembled into small devices to selectively collect oil from open water and a water/oil mixture using a pump, which manifests its promising practical applicability. Apart from these extraordinary properties, the approach developed has the lowest material cost and the shortest processing time hitherto.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call