Abstract

The problem of water shipping is studied by assuming two-dimensional flow conditions and using both experimental and numerical tools. Experimentally, the water on deck for a fixed barge-shaped structure has been analysed. Video images of the water-shipping events were recorded, wave elevation in the wave flume and pressure on a vertical superstructure along the ‘ship’ deck have been measured. Numerically, a boundary element method for unsteady nonlinear free-surface flows was developed and used for the analysis of water-on-deck phenomena. A comprehensive comparison between experimental and numerical data gave satisfactory agreement globally. The synergic experimental–numerical analysis highlights the main flow features during the water shipping and details of the water impact with the deck structures are discussed. In the model tests, the water on deck started as a plunging wave hitting the deck and entrapping air. This could be relevant for deck safety, but appears to be less important for the global evolution of the water along the deck and the later liquid interaction with the superstructure. The green-water loads on the vertical wall showed a two-peak behaviour typical of wave impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.