Abstract

Resonant standing waves excited on the water surface in a deep narrow rectangular cavity by a fully immersed cylinder harmonically oscillating in the vertical direction are studied theoretically and experimentally. The effect of the finite wavemaker size is considered in the framework of the potential two-dimensional flow theory. Nonlinearities and weak dissipation at solid surfaces are accounted for. The spatio-temporal structure of the waves in the presence of detuning between the forcing and the natural frequency of the system is analysed. The variation of the surface shape in space and time studied in experiments supports the assumption of two-dimensional flow. The finite size of the wavemaker causes a downshift of the effective resonant frequency of the cavity; this effect is enhanced by the nonlinearity. For small amplitude waves, the surface elevation evolution in time is decomposed into the sum of the time-periodic function, corresponding to the forcing frequency, and its second harmonic; the shape of the wavenumber spectra of these components depends on the forcing frequency. For larger wave amplitudes, additional peaks in the frequency spectrum appear. The theoretical predictions are compared with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.