Abstract
Methodology and results of full scale maneuvering trials for Riverine Support Patrol Vessel “RSPV”, built by COTECMAR for the Colombian Navy are presented. This ship is equipped with a “Pump – Jet” propulsion system and the hull corresponds to a wide-hull with a high Beam – Draft ratio (B/T=9.5). Tests were based on the results of simulation of turning diameters obtained from TRIBON M3˝ design software, applying techniques of Design of Experiments “DOE”, to rationalize the number of runs in different conditions of water depth, ship speed, and rudder angle. Results validate the excellent performance of this class of ship and show that turning diameter and other maneuvering characteristics improve with decreasing water depth.
Highlights
The Colombian Science and Technology Corporation for the Development of the Naval, Maritime, and Riverine Industry (COTECMAR, for its name in Spanish) designed and constructed a series of Riverine Support Patrol Vessels “RSPV” for the Colombian National Navy to comply with missions in over 13,000 Km of the nation’s navigable rivers
EDIC CRISTIAN REYES HOLGUÍN”, after correcting for wind and current; It was considered the average of the results of pairs of maneuvers executed under similar circumstances but on different flank, contrasting the results between trials conducted in shallow waters and those conducted in deep waters
It was evaluated the vessel’s turning ability, which was considered satisfactory according to IMO if it complied with the following criteria: the values of the results of trials for tactical diameter must be less than 5 L, consider the set of results in Table 6 (2.1 L, 1.1 L, 2.4 L, 1.9 L); the advance values of the results must be less than 4.5 L, consider the set of results (2.5 L, 1.2 L, 2.4 L, 2.6 L); according to said results, note that the vessel complies with International Towing Tank Conference (ITTC) criteria and, its turning ability is considered satisfactory
Summary
The Colombian Science and Technology Corporation for the Development of the Naval, Maritime, and Riverine Industry (COTECMAR, for its name in Spanish) designed and constructed a series of Riverine Support Patrol Vessels “RSPV” for the Colombian National Navy to comply with missions in over 13,000 Km of the nation’s navigable rivers. Conditions of maneuverability of vessels with very high beam - draft ratios (B/T=9.5) are critical because there is route instability, a situation exacerbated by navigation in very shallow waters with presence of currents This prior problem, as well as the review of the roles and operational capacities of the RSPV vessels called for re-engineering, which began during September 2003 with trials in the hydrodynamic experience towing tank at the “Centrum Techniki Okretowej” (CTO) in Gdansk, Poland, where resistance trials were developed on the vessel’s advance under different depth conditions, along with self-propulsion tests with a new type propulsion configuration -Pump Jet-. The contour of the response surface estimated for the turning diameter is shown in Fig. 5; this result has been obtained from simulation in TRIBON M3© using the mathematical models of filled form vessels and equipped with conventional rudders and propellers, given that there was no calculation tool to predict maneuverability characteristics of vessels with non-conventional, Pump-Jet type propulsion and steering systems. Base Design Number of experimental factors: 4 Number of blocks: 1 Number of responses: 1 Number of runs: 12, including 4 center-points per block Error degrees of freedom: 4 Randomized: Yes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.