Abstract

Ship–infrastructure cooperation, i.e., infrastructure scheduling, is significant for optimizing the utilization of spatial-temporal resources of infrastructures and improving the efficiency and safety of waterborne transportation systems. This paper carries out a systematic review of the scheduling problems of the infrastructures in waterborne transportation systems, including locks, terminals, berths, and waterway intersections. The infrastructure scheduling problems are linked to the classical optimization problems, and a generalized infrastructure scheduling problem is formulated. For lock scheduling, the ship placement sub-problem aims at minimizing the number of lockages, which is a kind of classic 2D bin packing problem; the lockage scheduling sub-problem deals with chamber assignment and lockage operation planning, which is modeled as a single or parallel machine scheduling problem. For berth and terminal scheduling, the idea of queuing theory (for discrete terminal) and 2D bin packing (for continuous terminal) are usually applied. Most research aims at minimizing the waiting time of ships and focuses on the continuous dynamic terminal scheduling problems. As a special infrastructure, the waterway intersection receives little attention. Most research focuses on traffic conflicts and capacity problems. Future research directions are provided based on the review results and problems of infrastructure scheduling in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.