Abstract
The ship hull surface reconstruction based on three-dimensional scattered points cloud is vital to Computer-Aided Design modeling of ship reverse engineering. There are several problems with traditional methods: the preprocessing of a large-scale scattered points cloud is complicated, and the result is susceptible to noise. Because of the “black box” characteristic, the surface reconstruction based on neural networks cannot apply to the practical engineering. To address these issues, combining the Radial Basis Function neural network and Non-Uniform Rational B-Spline interpolation algorithm, a new ship hull surface reconstruction method was proposed, which can satisfy the standard geometric model description in Computer-Aided Design system. Firstly, the Radial Basis Function neural network was used to pre-fit the three-dimensional scattered points cloud. Then the mathematical model of the surface was mapped. Finally, based on the bilinear interpolation algorithm, the mathematical model was transformed to a Non-Uniform Rational B-Spline surface to apply to the ship practical engineering. In addition, by comparing our method with the traditional method, the advantages of our method in surface reconstruction quality and surface repair ability were verified, which provided a new way for the application of Radial Basis Function neural network in ship reverse engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.