Abstract

Ship detection based on synthetic aperture radar (SAR) imagery is one of the key applications for maritime security. Compared with single-channel SAR images, polarimetric SAR (PolSAR) data contains the fully-polarized information, which better facilitates better discriminating between targets, sea clutter, and interference. Therefore, many ship detection methods based on the polarimetric scattering mechanism have been studied. To deal with the false alarms caused by the existence of ghost targets, resulting from azimuth ambiguities and interference from side lobes, a modified polarimetric notch filter (PNF) is proposed for PolSAR ship detection. In the proposed method, the third eigenvalue obtained by the eigenvalue–eigenvector decomposition of the polarimetric covariance matrix is utilized to construct a new feature vector. Then, the target power can be computed to construct the modified PNF detector. On the one hand, the detection rate of ship targets can be enhanced by target-to-clutter contrast. On the other hand, false alarms resulting from azimuth ambiguities and side lobes can be reduced to an extent. Experimental results based on three C-band AIRSAR PolSAR datasets demonstrated the capability of the proposed PNF detector to improve detection performance while reducing false alarms. To be specific, the figure of merit (FoM) of the proposed method is the highest among comparative approaches with results of 80%, 100%, and 100% for the tested datasets, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call