Abstract

Enzymatic route to fragrant 2-hydroxy-4-methoxybenzaldehyde (MBALD) formation in Hemidesmus indicus roots is not known. Earlier studies with H. indicus excised roots suggested a possible origin of MBALD via central phenylpropanoid pathway. Different elicitors (e.g., chitosan, methyl jasmonate, yeast extract) were tested for their relative efficiency in uplifting MBALD accumulation in roots, amongst which, treatment with yeast extract for 18 h showed maximum accumulation in excised roots. As benzoate pathways originate either directly from shikimate or via phenylpropanoid pathway, this study aimed at finding the roles of shikimate pathway in uplifting/enhancing MBALD accumulation in H. indicus roots upon elicitation. In fact, a sharp increase in shikimate dehydrogenase (SKDH; E.C. 1.1.1.25) along with phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.24) activities was noted on a time-course basis in yeast extract-treated roots as compared to the untreated ones. PAL as well as phenylpropanoid C₂ side-chain cleavage activities (leading to p-hydroxybenzaldehyde, the first benzoate product formed in the MBALD pathway) were compared in elicited roots, non-elicited roots and glyphosate-treated elicited roots at different concentrations of glyphosate. It was observed that glyphosate treatment, in addition to 25% suppressions of phenylalanine ammonia-lyase and C₂ chain-cleavage enzyme activities as compared to elicited one, also resulted in around 40% suppression of MBALD accumulation, when used in conjunction with yeast extract treatment; in contrast, shikimic acid content was increased as compared to glyphosate untreated ones. These findings suggest that shikimate pathway plays an important role in modulating MBALD biosynthesis in H. indicus roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.