Abstract

Cadmium (Cd) is one of the most toxic elements to all organisms. Glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway is considered an extremely important mechanism in Cd detoxification in plants. However, few studies have focused on the roles of glutamate-cysteine ligase (GSH1) and phytochelatin synthase (PCS1) in Cd accumulation and detoxification in plants. In this study, SpGSH1 and SpPCS1 were identified and cloned from Spirodela polyrhiza and analyzed their functions in yeast and S. polyrhiza via single- or dual-gene (SpGP1) overexpression. The findings of this study showed that SpGSH1, SpPCS1, and SpGP1 could dramatically rescue the growth of the yeast mutant Δycf1. In S. polyrhiza, SpGSH1 was located in the cytoplasm and could promote Mn and Ca accumulation. SpPCS1 was located in the cytoplasm and nucleus, mainly expressed in meristem regions, and promoted Cd, Fe, Mn, and Ca accumulation. SpGSH1 and SpPCS1 co-overexpression increased the Cd, Mn, and Ca contents. Based on the growth data of S. polyrhiza, it was recommended that biomass as the preferable indicator for assessing plant tolerance to Cd stress compared to frond number in duckweeds. Collectively, this study for the first time systematically elaborated the function of SpGSH1 and SpPCS1 for Cd detoxification in S. polyrhiza.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.