Abstract
We prove that every topologically transitive shift of finite type in one dimension is topologically conjugate to a subshift arising from a primitive random substitution on a finite alphabet. As a result, we show that the set of values of topological entropy which can be attained by random substitution subshifts contains all Perron numbers and so is dense in the positive real numbers. We also provide an independent proof of this density statement using elementary methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.