Abstract
A new family of numerically efficient full-memory variable metric or quasi-Newton methods for unconstrained minimization is given, which give simple possibility to derive related limited-memory methods. Global convergence of the methods can be established for convex sufficiently smooth functions. Numerical experience by comparison with standard methods is encouraging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.