Abstract

In this note the distribution for the occupation time of a one-dimensional Brownian bridge process on any Lebesgue measurable set between the initial and final states of the bridge is shown to be invariant under translation and reflection, so long as the translation or reflection also lies between the initial and final states of the bridge. The proof employs only the strong Markov property and elementary symmetry properties of the Brownian bridge process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.