Abstract

Background. Chronic kidney disease (CKD) is a global health burden with high mortality and morbidity. Clinical efficacy has been demonstrated for Shen Shuai II Recipe (SSR), an approved and widely used Chinese herbal medicine for over 20 years in China, to attenuate CKD progression. In this study, we explored the underlying molecular mechanisms of SSR benefits and studied its effects on apoptosis, a critical process in CKD development and progression. CKD was induced in rats with 5/6 renal ablation and infarction (A/I). Eight weeks after SSR treatment, we mainly assessed the severity of renal injury and fibrosis, the translocation of apoptotic factors in the mitochondrial apoptosis pathway, the degree of mitochondrial dysfunction, and the nuclear and mitochondrial translocation of p53. Furthermore, we detected the interaction of p53 with antiapoptotic Bcl-xL and Bcl-2 proteins. Our results showed that SSR significantly attenuated renal injury and fibrosis and inhibited the mitochondrial accumulation of proapoptotic proteins Bax and Puma and release of cytochrome c from mitochondria to the cytosol in a rat CKD model. In addition, SSR also improved the mitochondrial function and inhibited the nuclear and mitochondrial translocation of p53. In addition, SSR suppressed the p53 transactivation and the interaction of p53 with Bcl-xL and Bcl-2. These results suggested that SSR could block apoptosis in CKD by inhibiting p53 transcriptional-dependent and transcriptional-independent proapoptotic function and the mitochondrial pathway of apoptosis.

Highlights

  • Chronic kidney disease (CKD) has considerably increased worldwide and remains a major global health problem [1]

  • Our results showed that Shen Shuai II Recipe (SSR) significantly attenuated renal injury and fibrosis and inhibited the mitochondrial accumulation of proapoptotic proteins Bax and p53 upregulated modulator of apoptosis (Puma) and release of cytochrome c from mitochondria to the cytosol in a rat CKD model

  • We demonstrated that SSR blocked apoptosis induced by 5/6 (A/I) injury by inhibiting the accumulation of Bax and Puma in the mitochondria

Read more

Summary

Introduction

Chronic kidney disease (CKD) has considerably increased worldwide and remains a major global health problem [1]. Eight weeks after SSR treatment, we mainly assessed the severity of renal injury and fibrosis, the translocation of apoptotic factors in the mitochondrial apoptosis pathway, the degree of mitochondrial dysfunction, and the nuclear and mitochondrial translocation of p53. Our results showed that SSR significantly attenuated renal injury and fibrosis and inhibited the mitochondrial accumulation of proapoptotic proteins Bax and Puma and release of cytochrome c from mitochondria to the cytosol in a rat CKD model. SSR suppressed the p53 transactivation and the interaction of p53 with Bcl-xL and Bcl-2 These results suggested that SSR could block apoptosis in CKD by inhibiting p53 transcriptional-dependent and transcriptionalindependent proapoptotic function and the mitochondrial pathway of apoptosis

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.