Abstract

A general methodology for topology optimization using the finite element method is described for shell structures. Four- and nine-node Reissner–Mindlin shell elements with drilling degrees of freedom are used for the finite element response analysis. The artificial material model is used in the topology optimization and in particular, an isotropic multi-layer shell model is introduced to allow the formation of holes or stiffening zones. In addition, a single design variable resizing algorithm is implemented based on the existing criterion which is found to be adequate for the artificial material model. Several benchmark tests are presented to show the overall performance of the proposed methodology. The strain energy variation together with the variation of the layout of the structure is monitored. Some detailed examples are provided with comparisons of the use of the four- and nine-node elements and studies of critical solution parameters. Copyright 2000 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.