Abstract

For generating a more reasonable initial layout configuration, a three-dimensional topology optimization methodology of the steel-concrete composite structure is presented. Following Solid Isotropic Material with Penalization (SIMP) approach, an artificial material model with penalization for elastic constants is assumed and elemental density variables are used for describing the structural layout. The considered problem is thus formulated as to find the optimal material density distribution that minimizes the material volume under specified displacement constraints. By using the adjoint variable method for the sensitivity analysis, the optimization problem is efficiently solved by the gradient-based optimization algorithm. Numerical result shows that the proposed topology approach presented a novel structural topology of the simply-supported steel-concrete composite beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.