Abstract

In the present study we report the influence of shell thickness on fluorescence resonance energy transfer between Au/ZnO core-shell nanoparticles and Rhodamine 6G dye by steady-state and time-resolved spectroscopy and rectification behaviours. Au/ZnO core-shell nanoparticles with different shell thickness were synthesized in aqueous solution by chemically depositing zinc oxide on gold nanoparticles surface. A pronounced effect on the photoluminescence (PL) intensity and shortening of the decay time of the dye in presence of Au/ZnO core-shell nanoparticles is observed. The calculated energy transfer efficiencies from dye to Au/ZnO are 62.5%, 79.2%, 53.6% and 46.7% for 1.5nm, 3nm, 5nm and 8nm thickness of shell, respectively. Using FRET process, the calculated distances (r) are 117.8, 113.2Å 129.9Å and 136.7Å for 1.5nm, 3nm, 5nm and 8nm thick Au/ZnO core-shell nanoparticles, respectively. The distances (d) between the donor and acceptor are 71.0, 57.8, 76.2 and 81.6Å for 1.5nm, 3nm, 5nm and 8nm thick core-shell Au/ZnO nanoparticles, respectively, using the efficiency of surface energy transfer (SET). The current-voltage (I-V) curve of hybrid Au/ZnO clearly exhibits a rectifying nature and represents the n-type Schottky diode characteristics with a typical turn-on voltage of between 0.6 and 1.3V. It was found that the rectifying ratio increases from 20 to 90 with decreasing the thickness of the shell from 5nm to 3nm and with shell thickness of 8nm, electrical transport through the core-shell is similar to what is observed with pure ZnO samples nanoparticles. The results indicated that the Au/ZnO core-shell nanoparticles with an average shell thickness of 3nm exhibited the maximum energy transfer efficiencies (79.2%) and rectification (rectifying ratio 90).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call