Abstract
Investigations on asymmetries showed that deviations from perfect bilateral symmetry are interpreted as environmental changes inducing developmental instability. Since morphological abnormalities increase with pollution, deformations may be considered indicators of the organism exposition to pollution. Therefore, the onset of asymmetry in otherwise normally symmetrical traits has been used as a measure of some stresses as well. In this context, we studied how marine pollution affects the valve morphological alterations in the mussel Mytilus galloprovincialis. We used 180 specimens (30 per site) from the aquaculture area of Goro (River Po delta, northern Adriatic Sea), translocated, and released within 50 × 50 × 50 cm cages in five sites: two disturbed and one undisturbed near Naples (eastern Tyrrhenian Sea), and one disturbed and one undisturbed near Siracusa (western Ionian Sea). Disturbed sites were stressed by heavy industrialization and heavy tankers traffic of crude and refined oil, and were defined basing on sediment contamination. In particular, by the cone-beam computed tomography we obtained 3D virtual valve surfaces to be analyzed by the geometric morphometric techniques. Specifically, we focused the levels of the shell shape fluctuating asymmetry in relation to the degrees of marine pollution in different sites of the Tyrrhenian Sea. The Mahalanobis distances (interpreted as proxy of the individual shape asymmetry deviation from the mean asymmetry) significantly regressed with the sediment contamination gradient. Indeed, although the left-right differences were normally distributed in each studied site, the individual asymmetry scores (IAS) significantly varied amongst the investigated sites. IAS showed higher values in disturbed areas than those of undisturbed ones in both Tyrrhenian and Ionian Sea. Our results are consistent with past studies on molluscans and other taxa, demonstrating some detrimental effects of chemicals on organisms, although the investigated morphological marker did not discriminate the real disturbance source. Our findings indicate that the mussels act as a prognostic tool for sea pollution levels driving detrimental effects on benthic community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.