Abstract

We report electroluminescence (EL) of colloidal CdSe/CdS, CdSe/ZnS, and CdSe/CdS/CdZnS/ZnS core/shell quantum dots (QDs) in multilayer light-emitting diodes (LEDs) fabricated by spin coating a near monolayer of the core/shell QDs on cross-linkable hole transporting layers. It is found that CdSe/CdS QD-LEDs exhibit a faster decrease in EL quantum efficiency (∼2% at a brightness of 100 cd/m2) with increasing current density and lower maximum brightness than those of CdSe/ZnS QD-LEDs. A more significant redshift and spectral broadening of the EL observed in CdSe core/shell QDs with a CdS or CdS/CdZnS/ZnS shell than with a ZnS shell indicate that the electron wave function can penetrate into the shell under electric field. The difference in device performance and EL spectra results from conduction band offsets between the CdSe cores and CdS or ZnS shells, suggesting the existence of the exciton ionization in the QD-LEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call