Abstract

Simple SummaryFeed availability for small ruminant production in the Brazilian semi-arid region is characterized by the seasonality of forage production over the year. Large variations of methane (CH4) production have been reported among forage types and are mainly explained by the rate of fermentation of plant cell contents and the presence of various plant secondary compounds, notably in heterogeneous pasture. The aim of this study was to evaluate the effects of Zinc sulfate and propylene glycol (PG) on CH4 emission, nutrient intake, digestibility, and production in sheep grazing on a native Caatinga (Brazilian semi-arid savannah) pasture during the rainy season (from March to June 2014). Fifteen mixed Santa Inês sheep were distributed into three treatments (control, Zn, and propylene glycol supplement) in this 112-day study. CH4 emission was measured using the SF6 tracer gas technique. Across the months of the trial, organic matter (OM) and neutral detergent fiber (NDF) intakes were greater in March, while the greatest emission of CH4 (g/day) was observed in May. Total CH4 emission (kg) from March to June (112 days of evaluation) was greater in PG. In conclusion, our results indicate that Zn and PG have no beneficial effects in mitigating sheep CH4 emission when grazing Caatinga-native pasture in the rainy season.The aim of this study was to evaluate the effects of Zinc sulfate and propylene glycol (PG) on methane (CH4) emission, nutrient intake, digestibility, and production in sheep grazing on a native Caatinga (Brazilian semi-arid savannah) pasture during the rainy season (from March to June 2014). Fifteen mixed Santa Inês sheep, all non-castrated males, with initial body weight of 19.8 ± 1.64 kg, and 4 ± 0.35 months of age, were distributed in a complete randomized design into three treatments: control (CT)—concentrate supplemented at 0.7% of body weight; CT + 300 mg of Zn/day; and CT + 2.5 mL of propylene glycol/kg LW0.75/day. Measurements were done in four periods during the rainy season, with 28 days of interval between each measurement. CH4 emission was measured using the SF6 tracer gas technique. CH4 emission per day was greater in PG than in CT and Zn (p < 0.05). However, no additive effect was observed on the intakes of organic matter (OM) and neutral detergent fiber (NDF), or on CH4 emission expressed as a function of OM and NDF intakes (p > 0.05). Across the months of the trial, OM and NDF intakes were greater in March, while the greatest emission of CH4 (g/day and g by g/OM intake) was observed in May (p < 0.05). Total CH4 emission (kg) from March to June (112 days of evaluation) was greater in PG compared with CT and Zn (p < 0.05). Zinc and PG had no effect on total CH4 emission when it was expressed per unit of body weight gain or carcass production (p > 0.05). The results of this study indicate that Zinc sulfate and propylene glycol have no beneficial effects in mitigating sheep CH4 emission. The CH4 emissions originated from sheep grazing native Caatinga pasture change throughout the rainy season due to fluctuations in availability and quality of pasture biomass. Moreover, the inclusion of zinc sulfate or propylene glycol did not improve animal feed intake, nutrient digestibility, and animal performance.

Highlights

  • Methane (CH4 ) production through enteric fermentation is a global matter of concern due to its contribution to greenhouse gases (GHG) accumulation in the atmosphere

  • The results of this study indicate that Zinc sulfate and propylene glycol have no beneficial effects in mitigating sheep CH4 emission

  • A greater amount of g CH4 /day was emitted from propylene glycol (PG) compared with CT and Zn (p < 0.05; Table 3)

Read more

Summary

Introduction

Methane (CH4 ) production through enteric fermentation is a global matter of concern due to its contribution to greenhouse gases (GHG) accumulation in the atmosphere. CH4 emissions in the livestock sector come from this natural digestive process, where countries from Latin-America contribute with 20.9 Tg CH4 /yr, representing about 15% to the global enteric fermentation emissions of 104 Tg. CH4 /yr [1,2]. Reducing CH4 emissions can mitigate the impact of the livestock sector on climate change, improve energy utilization, and animal performance. Reductions in CH4 emissions by livestock are associated with improvements in diet quality, e.g., high nutritive pastures and feed supplementation [5]. Effective mitigation strategies should enable a reduced cost of meat production, which is associated to greater energy utilization, in addition to reductions in CH4 emissions per unit of product produced [6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call