Abstract

Eruption of permanent incisors (dentition) is used as a proxy for age for defining meat quality in Australian sheep meat. However, this approach may not be reliable. While not presently available, an objective method could be used to determine sheep age, and thus sheep category, which would then potentially remove any inaccuracies that may occur in classifying sheep meat product. Statistical classification algorithms have been successfully used in bioinformatics. In this paper we review the performance of three algorithms (support vector machines, recursive partitioning and random forests) for determining sheep age. The algorithms were applied to the measured fatty acid profiles of fat samples from 533 carcasses; 254 lamb (<1 year old), 131 hogget (~1–2 years old) and 148 mutton (>2 years old) samples. Three data pretreatments (range transformation, column mean centering and range transformation with mean centering) were also examined to determine their impact on the performance of the algorithms. The random forests algorithm, when applied to mean-centred data, gave 100% predictive accuracy when classifying sheep category. This approach could be used for the development of an objective test for determining sheep age and category.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.