Abstract
Abstract A general theory of hydrophobic hydration and pairwise hydrophobic interaction has been developed in the last years. The main ingredient is the recognition that: (a) cavity creation (necessary to insert a solute molecule into water) causes a solvent-excluded volume effect that leads to a loss in the translational entropy of water molecules; (b) the merging of two cavities (necessary to form the contact minimum configuration of two nonpolar molecules) causes a decrease in the solvent-excluded volume effect and so an increase in the translational entropy of water molecules. The performance of the theoretical approach is tested by reproducing both the hydration thermodynamics of xenon and the thermodynamics associated with the formation of the contact minimum configuration of two xenon atoms, over a large temperature range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.