Abstract
When a disordered solid is sheared, yielding is followed by the onset of intermittent response that is characterized by slip in local regions usually labeled shear-transformation zones. Such intermittent response resembles the behavior of earthquakes or contact depinning, where a well-defined landscape of pinning disorder prohibits the deformation of an elastic medium. Nevertheless, a disordered solid is evidently different in that pinning barriers of particles are due to neighbors that are also subject to motion. Microscopic yielding leads to destruction of the local microstructure and local heating. It is natural to assume that locally a liquid emerges for a finite timescale before cooling down to a transformed configuration. For including this characteristic transient in glass depinning models, we propose a general mechanism that involves a "pinning delay" time T(pd), during which each region that slipped evolves as a fluid. The new timescale can be as small as a single avalanche time step. This is a local, effective, and dynamical in nature mechanism that may be thought as dynamical softening. We demonstrate that the inclusion of this mechanism causes a drift of the critical exponents toward higher values for the slip sizes τ, until a transition to permanent shear-banding behavior happens causing almost oscillatory, stick-slip response. Moreover, it leads to a proliferation of large events that are highly inhomogeneous and resemble sharp slip band formation.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have