Abstract

Pressure-induced structural and electronic transformations of tungsten disulfide (WS2) have been studied to 60 GPa, in both hydrostatic and nonhydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy, and synchrotron X-ray diffraction. The results show the evidence for an isostructural phase transition from hexagonal 2Hc phase to hexagonal 2Ha phase, which accompanies the metallization at ∼37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS2 under nonhydrostatic compression. Interestingly, this transition is absent in hydrostatic conditions using He pressure medium, underscoring its strong dependence on the state of stress. We attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS2 that may occ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.