Abstract

Characterization of vulnerable plaques in the carotid artery is critical for the prevention of ischemic stroke. However, ultrasound-based methods for plaque characterization used in the clinics today are limited to visual assessment and evaluation of plaque echogenicity. Shear Wave Elastography (SWE) is a new tissue characterization technique based on radiation force-induced shear wave propagation with potential use in plaque vulnerability assessment. The purpose of this study was to develop an experimental setup to test the feasibility of SWE for carotid plaque characterization. A carotid artery phantom with a soft inclusion in the wall, mimicking a vulnerable plaque, was constructed (10% polyvinyl alcohol (PVA), 3% graphite) by exposing the vessel and plaque to three and one freeze-thaw cycles (6h freeze, 6h thaw) respectively. An Aixplorer SWE system (Supersonic Imagine) was used to measure the shear wave speed (c <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> ) in the vessel wall and plaque. The Young's modulus (E) was then calculated via the Moens-Korteweg (M-K) equation. For comparison, eight cylinders (d = 4 cm, h = 4 cm) were constructed for mechanical testing from the same PVA batch, of which four were exposed to three freeze-thaw cycles (mimicking the vessel wall) and four to one freeze-thaw cycle (mimicking the plaque). The Young's moduli for the cylinders were obtained via a displacement controlled mechanical compression test (Instron 5567) by applying 5% strain. The mean shear wave speed was 2.6 (±0.7) m/s in the vessel wall, 1.8 (±0.7) m/s in the plaque, resulting in E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">vessel</sub> = 11.5 (±0.5) kPa, E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">plaque</sub> = 4.3 (±0.5) kPa. The compression tests resulted in E = 64.2 (±11.1) kPa in the hard cylinder and E = 9.7 (±3.1) kPa in the soft cylinder. The results showed that it was possible to distinguish between the arterial wall and the plaque. The disagreement between mechanical testing and SWE can be explained by the fact tha- the shear wave does not propagate monochromatically in cylindrical geometry. To achieve a better calculation of the elastic modulus, the frequency dependency of the shear wave velocity must be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call