Abstract
An important aspect to ensure progress in biomedicine is the fundamental understanding of the interaction of cells and tissue with (bio)materials. The consideration of shear stress in drug delivery and/or tissue engineering remains largely unexplored. To illustrate the fundamental relevance, we employ a microfluidic setup to evaluate the myoblast cell response to two prominent drug carrier systems, namely, liposomes and nanoparticles, in the presence of low shear stress. We show that positively charged carriers have an enhanced interaction with myoblast cells in the presence of shear stress. This effect can be translated into improved therapeutic response in terms of reduction in cell viability when delivering a cytotoxic compound or into a better translocation efficiency when using lipoplexes. Taken together, our fundamental findings open up new possibilities in tissue engineering and drug delivery by considering an additional parameter when delivering beneficial compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.