Abstract

Fluidic shear stress generated by fluid flow in human body contributes to the interactions between nanoparticles (NPs) and cells and may affect cellular distribution and delivery of NPs. Furthermore, different NPs properties may differently influence the cellular delivery and targeting of NPs under the in vivo dynamic environments. Thus, we reviewed and discussed how fluidic shear stress affects to drug delivery and cellular distribution of diverse NPs under the biomimetic microfluidic shear stress. Among different physicochemical properties of NPs, size, shape, material type and surface functionality, and surface charge of NPs are critical factors to cellular uptake in presence of fluidic shear stress in dynamic cellular environment. From previous studies, it suggested that fluidic shear stress stimulated specific endocytosis and prompted cell signaling pathway. The cellular interactions between NPs and cells in drug delivery should be carefully investigated in presence of shear stress which is one of critical factors to show the difference of in vitro and in vivo drug distribution and therapy. The shear-activated drug delivery using NPs were also the scope of this review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.