Abstract

This study presents an experimental and numerical evaluation of the shear behavior of recycled aggregate concrete beams without transversal reinforcement. These beams were manufactured as self-compacted concrete with the use of both natural aggregate and recycled aggregate. The beams were subjected to direct and indirect loading conditions. The mechanical properties of four mixes were characterized in terms of compressive strength, splitting tensile strength, and elastic modulus. The experimental results showed that the shear capacity of recycled aggregate concrete is lower than those made with natural aggregate. The experimental shear capacities of the tested beams were compared with ACI318M-14 and relevant research studies in the literature. The ratio of experimental shear stress divided by the root square of concrete compressive strength , which indicates the ability of diagonally cracked concrete to transmit tension and shear. was remained for all configurations greater than 0.17, which is the minimum value recommended by the ACI318-14. Results from nonlinear finite element models were compared with the experimental data, and good agreement was achieved

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.