Abstract

Self-consolidating concrete (SCC) is a new generation of high performance concrete known for its excellent deformability and high resistance to segregation and bleeding. Lack of information regarding in situ properties and structural performance of SCC is one of the main barriers to its acceptance in the construction industry. There is some concern among researchers and designers that SCC may not be strong enough in shear because of some uncertainties in mechanisms resisting shear — notably the aggregate interlock mechanism. Because of the presence of comparatively smaller amount of coarse aggregates in SCC, the fracture planes are relatively smooth as compared with normal concrete (NC) that may reduce the shear resistance of concrete by reducing the aggregate interlock between the fracture surfaces. The paper compares the shear resistance of SCC and NC based on the results of an experimental investigation on 18 flexurally reinforced beams without shear reinforcements. The test parameters include concrete type, maximum size of coarse aggregate, coarse aggregate content, and beam shear span-to-depth ratio. Shear strength, shear ductility, crack patterns, and failure modes of all experimental beams are compared to analyze the shear resistance mechanisms of SCC and NC beams in both pre- and post-cracking stages. The recommendations of this paper can be of special interest to designers considering the use of SCC in structural applications.Key words: self-consolidating concrete, shear resistance, shear resistance factor, aggregate interlock, dowel action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call