Abstract

The molecular mechanisms by which mechanical energy accelerates a chemical reaction at sliding solid–solid interfaces are not well understood because of the experimental difficulties in monitoring chemical processes and their rates, and in controlling parameters such as interfacial temperature. These issues are addressed by measuring the shear-induced rate of methane formation from the decomposition of adsorbed methyl thiolate species on copper in ultrahigh vacuum (UHV), where the frictional heating is negligible. The effect of a constant force F on the energy profile for thiolate decomposition from density functional theory calculations is modeled by superimposing a linear potential, V(x) = −Fx. This enables the change in activation barrier to be calculated as a function of force. The mechanically induced reaction rate is measured by sliding a ball over a methyl thiolate-covered copper surface from the methane yield measured by a mass spectrometer placed in the UHV chamber. Molecular dynamics simulations...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.