Abstract

The properties of the probe–surface contact for a near-field optical microscope driven in the shear force mode have been studied applying lateral amplitudes of the probing fiber tip larger than 15 nm. Electric current measurements between a conductive tip and a conductive sample reveal a pulsed current behavior at the very beginning of the approach curve. In the upper part of the approach curve it turns to the quasiconstant current. From this observation a conclusion is drawn about the presence of permanent mechanical contact between the probe and the surface in the shear force mode. A shift of the approach curve along the z-axis as a function of dither amplitude was discovered. These results are in contradiction to the established conception of possible physical mechanisms of shear force interaction. To settle this issue the friction model is proposed according to which the damping of the probe vibrations is caused by the friction between the tip and the surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.