Abstract

In our experiments we show, that a contaminating water film is very important for the shear–force distance control in near-field optical microscopy. This is demonstrated at the transition between a hydrophilic glass surface and a hydrophobic Langmuir–Blodgett film of arachidic acid at different relative humidities. This contaminating water film is one, if not the important reason for the damping of an oscillating fiber during surface approach. It is further shown, that the bulk viscosity of water alone cannot be responsible for the observed damping effect. A thickness dependent viscosity of this water film is proposed. These observations can also explain, why the shear–force distance control works on nearly all surfaces at ambient conditions, but fails to work at very low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.