Abstract

Expressions for the dispersion relation and growth rate of the KAW are derived for weak and strong shear regimes using the kinetic approach in view of the simultaneous observations of the large earthward Alfvenic Poynting flux, small-scale kinetic Alfven wave (KAW), earthward flowing electrons and upward flowing ions, at the substorm event in the plasma sheet boundary layer (PSBL). General loss-cone distribution function is adopted to describe the velocity distribution of the plasma particles. The results explain the generation of the observed KAW in the PSBL by the weak shear at the substorm onset. It is found that during the substorm expansion phase the cyclotron damping of KAW may lead to the upward flowing ion. Whereas, it’s Landau damping that may lead to the parallel energisation of the electrons that explains the observed loss of Alfvenic Poynting flux. It is also noted that the loss-cone distribution index changes the profiles of the frequency and growth rate plots of the shear-driven KAW. The loss-cone distribution function is therefore, an important factor for the excitation of KAW in the active region of the magnetosphere at the PSBL. Results are consistent with the finding of Wu and Seyler (J Geophys Res 108A6:1236, 2003) concerning kinetic Alfven wave generation and its stabilization by the sheared flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call