Abstract

To investigate the shear behavior of FRP (fiber reinforced polymers)-UHPC (ultra-high performance concrete) composite beams, four-point bending tests were conducted on seven FRP-UHPC specimens and two FRP-NSC (normal strength concrete) specimens, having different width and depth of concrete flange as well as FRP shear key (FSK) spacing. The slip between FRP profiles and concrete flange was controlled by employing FSK and epoxy resin bonded hybrid connection. The failure pattern, load-deflection/strain curves, and sliding response of composite beams were analyzed to study the influence of concrete type, FSK spacing, width and thickness of concrete slab. The results indicate that FRP-UHPC composite beams exhibited shear failure, while FRP-NSC composite beams experienced bending-shear failure. The composite beams demonstrated shear-lag effect, which became more pronounced with the increasing of the concrete slab width. The use of UHPC, reducing FSK spacing, and increasing the size of cross-section of concrete flange can effectively enhance the shear performance and reduce interface sliding. Formulae were developed to predict the shear capacity and deflection, considering shear deformation. The results predicted by the formulae developed match well with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.