Abstract
Blood vessels are permanently subjected to mechanical forces in the form of stretch and shear stress. Any alterations in the hemodynamic environment invariably produce transformations in the vessel wall that will aim to accommodate the new conditions and to ultimately restore basal levels of mechanical forces. Many receptors, present on the surface of endothelial cells, allow vessels to detect subtle changes in shear stress. Inside the cells, cytoskeletal proteins transmit and modulate the tension between integrins, focal adhesion sites, and the extracellular matrix. Besides inducing structural modifications, mechanical forces lead to changes in the ionic composition of cells, mediated by ion channels, stimulate various membrane receptors, and induce complex biochemical cascades. Many intracellular pathways such as the MAP kinase cascade are activated by shear stress and initiate via sequential phosphorylations the activation of transcription factors and subsequent gene expression. Thus, by purely local mechanisms, blood vessels are capable of true autonomic regulation which enables them to adapt to their mechanical environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.