Abstract
Blood vessels are permanently subjected to mechanical forces in the form of stretch, encompassing cyclic mechanical strain due to the pulsatile nature of blood flow, and shear stress. Alterations in stretch or shear stress invariably produce transformations in the vessel wall that will aim to accommodate the new conditions and to ultimately restore basal levels of tensile stress and shear stress. Vascular cells are equipped with numerous receptors that allow them to detect and respond to the mechanical forces generated by pressure and shear stress. The cytoskeleton and other structural components have an established role in mechanotransduction, being able to transmit and modulate tension within the cell via focal adhesion sites, integrins, cellular junctions and the extracellular matrix. Beyond the structural modifications incurred, mechanical forces can also initiate complex signal transduction cascades leading to functional changes within the cell. Many intracellular pathways, including the MAP kinase cascade, are activated by flow or stretch and initiate, via sequential phosphorylations, the activation of transcription factors and subsequent gene expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.