Abstract
Interactions between a high molecular weight poly(ethylene oxide) (PEO) and the anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in aqueous solutions were investigated by shear and extensional rheometry. Results for mixtures between PEO and sodium dodecyl sulfate (SDS) are also presented for comparison purposes. Addition of anionic surfactants to PEO solutions above the critical aggregation concentration (CAC), at which micellar aggregates attach to the polymer chain, results in an increase in shear viscosity due to PEO coil expansion, and a strengthening of interchain interactions. In extensional flows, these interactions result in a decrease of the critical shear rate for the onset of the characteristic extension thickening of the PEO solutions that is due to transient entanglements of polymer molecules. The relaxation times associated with these transient entanglements are not directly proportional to the shear viscosity of the solutions, but rather vary more rapidly with surfactant concentration. In the presence of an electrolyte, coil contraction results in lower shear viscosities and a decrease in the extension thickening effects at surfactant concentrations just beyond the CAC. The relaxation times associated with transient entanglement reach a minimum at the same surfactant concentration as the shear viscosity, which indicates that coil contraction is responsible for the observed effects in both types of flow. However, the increase in extensional-flow entanglement relaxation times is much more abrupt than the decrease in shear viscosity. All these results point to a greater sensitivity of extensional flows on the molecular conformation of PEO/surfactant complexes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have