Abstract

This paper forms part of the general development of the theory of quasigroup permutation representations. Here, the concept of sharp transitivity is extended from group actions to quasigroup actions. Examples of nontrivial sharply transitive sets of quasigroup actions are constructed. A general theorem shows that uniformity of the action is necessary for the existence of a sharply transitive set. The concept of sharp transitivity is related to two pairwise compatibility relations and to maximal cliques within the corresponding compatibility graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.