Abstract

We have measured the effective mass, m, and Lande g-factor in very dilute two-dimensional electron systems in silicon. Two independent methods have been used: (i) measurements of the magnetic field required to fully polarize the electrons' spins and (ii) analysis of the Shubnikov-de Haas oscillations. We have observed a sharp increase of the effective mass with decreasing electron density while the g-factor remains nearly constant and close to its value in bulk silicon. The corresponding strong rise of the spin susceptibility may be a precursor of a spontaneous spin polarization; unlike in the Stoner scenario, it originates from the enhancement of the effective mass rather than the increase of g-factor. Furthermore, using tilted magnetic fields, we have found that the enhanced effective mass is independent of the degree of spin polarization and, therefore, its increase is not related to spin exchange effects, in contradiction with existing theories. Our results show that the dilute 2D electron system in silicon behaves well beyond a weakly interacting Fermi liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.