Abstract

Using magnetocapacitance data in tilted magnetic fields, we directly determine the chemical potential jump in a strongly correlated two-dimensional electron system in silicon when the filling factor traverses the spin and the cyclotron gaps. The data yield an effective g factor that is close to its value in bulk silicon and does not depend on the filling factor. The cyclotron splitting corresponds to the effective mass that is strongly enhanced at low electron densities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.