Abstract
Phase transitions in correlated materials can be manipulated at the nanoscale to yield emergent functional properties, promising new paradigms for nanoelectronics and nanophotonics. Vanadium dioxide (VO2), an archetypal correlated material, exhibits a metal-insulator transition (MIT) above room temperature. At the thicknesses required for heterostructure applications, such as an optical modulator discussed here, the strain state of VO2 largely determines the MIT dynamics critical to the device performance. We develop an approach to control the MIT dynamics in epitaxial VO2 films by employing an intermediate template layer with large lattice mismatch to relieve the interfacial lattice constraints, contrary to conventional thin film epitaxy that favors lattice match between the substrate and the growing film. A combination of phase-field simulation, in situ real-time nanoscale imaging, and electrical measurements reveals robust undisturbed MIT dynamics even at preexisting structural domain boundaries and significantly sharpened MIT in the templated VO2 films. Utilizing the sharp MIT, we demonstrate a fast, electrically switchable optical waveguide. This study offers unconventional design principles for heteroepitaxial correlated materials, as well as novel insight into their nanoscale phase transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.