Abstract
A singularly perturbed convection–diffusion problem posed on the unit square is considered. Its solution may have exponential and parabolic boundary layers, and corner singularities may also be present. Sharpened pointwise bounds on the solution and its derivatives are derived. The bounds improve bounds near an outflow corner of the problem that were derived in an earlier paper of the authors. Application is made to an error analysis of a finite element method for the problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.