Abstract
We consider a class of singularly perturbed elliptic problems posed on a unit square. These problems are solved by using fitted mesh methods by many researchers but no attempts are made to solve them using fitted operator methods, except our recent work on reaction–diffusion problems [J.B. Munyakazi and K.C. Patidar, Higher order numerical methods for singularly perturbed elliptic problems, Neural Parallel Sci. Comput. 18(1) (2010), pp. 75–88]. In this paper, we design two fitted operator finite difference methods (FOFDMs) for singularly perturbed convection–diffusion problems which possess solutions with exponential and parabolic boundary layers, respectively. We observe that both of these FOFDMs are ϵ-uniformly convergent. This fact contradicts the claim about singularly perturbed convection–diffusion problems [Miller et al. Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996] that ‘when parabolic boundary layers are present, …, it is not possible to design an ϵ-uniform FOFDM if the mesh is restricted to being a uniform mesh’. We confirm our theoretical findings through computational investigations and also found that we obtain better results than those of Linß and Stynes [Appl. Numer. Math. 31 (1999), pp. 255–270].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.