Abstract

The theory of Fourier integral operators is surveyed, with an emphasis on local smoothing estimates and their applications. After reviewing the classical background, we describe some recent work of the authors which established sharp local smoothing estimates for a natural class of Fourier integral operators. We also show how local smoothing estimates imply oscillatory integral estimates and obtain a maximal variant of an oscillatory integral estimate of Stein. Together with an oscillatory integral counterexample of Bourgain, this shows that our local smoothing estimates are sharp in odd spatial dimensions. Motivated by related counterexamples, we formulate local smoothing conjectures which take into account natural geometric assumptions arising from the structure of the Fourier integrals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.